A fórmula da área de prisma que você pode aprender

[ad_1]
Um prisma é um espaço que possui um par de lados paralelos e congruentes, nomeadamente a base e o topo, com uma forma de n lados. Os outros lados, ou seja, os lados verticais, são retangulares. Talvez sem perceber, você já viu a forma desse espaço na vida cotidiana. A forma do telhado da casa ou a forma de uma tenda de acampamento às vezes tem um prisma, ou seja, um prisma triangular. Bem, nesta ocasião aprenderemos o que é um prisma e também como calcular a área de superfície de um prisma junto com exemplos de seus problemas.
Como mencionado acima, um prisma é uma forma com a base e os lados superiores da forma de n lados, existem triângulos congruentes, quatro, cinco ou seis, e também consistem em lados retangulares verticais. Alguns dos tipos de prismas são:
Prisma triangular
Um prisma de base triangular e uma lateral superior.
Prisma Quadrilateral
Tem outro nome, que é cubo, se todos os lados têm o mesmo comprimento ou blocos se nem todas as arestas têm o mesmo comprimento.
Prisma de cinco lados
Construa uma sala que tenha uma base e um topo em pentágono.
Hexagon Prism
Um prisma hexagonal é uma forma cuja base e topo são em formato hexagonal.
Cada tipo de prisma terá muitos lados, arestas e ângulos diferentes, há uma maneira de descobrir isso.
Para encontrar o número de lados do prisma, a fórmula é n + 2, assim:
- Prisma triangular (n + 2 = 3 + 2 = 5 lados)
- Prisma retangular (n + 2 = 4 + 2 = 6 lados)
- Prisma Pentágono (n + 2 = 5 + 2 = 7 lados)
- Prisma hexagonal (n + 2 = 6 + 2 = 8 lados)
Considerando que o número de costelas do prisma é 3n:
- Prisma triangular (3 × 3 = 9 arestas)
- Prisma retangular (4 × 3 = 12 arestas)
- Prisma Pentágono (5 × 3 = 15 arestas)
- Prisma hexagonal (6 × 3 = 18 arestas)
E para o número de ângulos do prisma, você pode encontrar a fórmula 2n, por exemplo:
- Prisma triangular (2 × 3 = 6 vértices)
- Prisma retangular (2 × 4 = 8 vértices)
- Prisma Pentágono (2 × 5 = 10 vértices)
- Prisma hexagonal = (2 × 6 = 12 vértices)
Agora que conhecemos os vários tipos de prismas e suas características, vamos estudar a fórmula para a área da superfície de um prisma e também exemplos de problemas.
Fórmula da área da superfície do prisma e exemplos de problemas
Cada tipo de prisma possui uma fórmula que é praticamente a mesma, o que o diferencia é a fórmula para a área da base do prisma. Simplificando, a fórmula usada é:
Área da superfície do prisma = 2 x área da base + (perímetro da base x altura do prisma)
Para entender isso, vamos examinar um exemplo de problema a seguir.
Exemplo de problemas:
Um prisma triangular tem uma base de forma triangular com os lados da base 4 cm, os outros lados 8 cm e uma altura de 6 cm. Se a altura do prisma for de 20 cm, encontre a área da superfície do prisma triangular.
Solução:
Primeiro, vamos encontrar a área da base, que é o triângulo.
Área do triângulo = ½ x base x altura
Área do triângulo = ½ x 4 x 6
Área do triângulo = 12 cm2
Depois disso, vamos determinar a área da superfície do prisma.
Área do prisma = 2 x área da base + (perímetro da base x altura)
Área do prisma = 2 x 12 + ((4 + 8 + 8) x 20)
Área do prisma = 24 + 400
A área do prisma = 424 cm2
Essa é a fórmula para a área da superfície de um prisma e também um exemplo do problema. Para conseguir entender mais sobre isso, você pode tentar Smart Class. Há muito material e também outros exemplos de perguntas que podem ajudá-lo. Vamos, o que você está esperando!
[ad_2]
Source link